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Biomedical Signal Processing

Hsun-Hsien Chang and José M. F. Moura

I. I NTRODUCTION

Biomedical signals are observations of physiological activities of organisms, ranging from gene

and protein sequences, to neural and cardiac rhythms, to tissue and organ images. Biomedical

signal processing aims at extracting significant information from biomedical signals. With the

aid of biomedical signal processing, biologists can discover new biology and physicians can

monitor distinct illnesses.

Decades ago, the primary focus of biomedical signal processing was on filtering signals to

remove noise [1]–[6]. Sources of noise arise from imprecision of instruments to interference of

power lines. Other sources are due to the biological systems themselves under study. Organisms

are complex systems whose subsystems interact, so the measured signals of a biological subsys-

tem usually contain the signals of other subsystems. Removing unwanted signal components can

then underlie subsequent biomedicine discoveries. A fundamental method for noise cancelation

analyzes the signal spectra and suppresses undesired frequency components. Another analysis

framework derives from statistical signal processing. This framework treats the data as random

signals; the processing, e.g. Wiener filtering [6] or Kalman filtering [7], [8], utilizes statistical

characterizations of the signals to extract desired signal components.

While these denoising techniques are well established, the field of biomedical signal processing

continues to expand thanks to the development of various novel biomedical instruments. The

advancement of medical imaging modalities such as ultrasound, magnetic resonance imaging

(MRI), and positron emission tomography (PET), enables radiologists to visualize the structure

and function of human organs; for example, segmentation of organ structures quantifies organ

dimensions [9]. Cellular imaging such as fluorescence tagging and cellular MRI assists biologists
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monitoring the distribution and evolution of live cells [10]; tracking of cellular motion supports

modeling cytodynamics [11]. The automation of DNA sequencing aids geneticists to map DNA

sequences in chromosomes [12]; analysis of DNA sequences extracts genomic information of

organisms [13]. The invention of gene chips enables physicians to measure the expressions of

thousands of genes from few blood drops [14]; correlation studies between expression levels

and phenotypes unravels the functions of genes [15]. The above examples show that signal pro-

cessing techniques (segmentation, motion tracking, sequence analysis, and statistical processing)

contribute significantly to the advancement of biomedicine.

Another emerging, important need in a number of biomedical experiments isclassification.

In clinics, the goal of classification is to distinguish pathology from normal. For instance,

monitoring physiological recordings, clinicians judge if patients suffer from illness [16]; watching

cardiac MRI scans, cardiologists identify which region the myocardium experiences failure [17];

analyzing gene sequences of a family, geneticists infer the likelihood that the children inherit

disease from their parents [18]. These examples illustrate that automatic decision making can

be an important step in medical practice. In particular, incorrect disease identification will not

only waste diagnosis resources but also delay treatment or cause loss of patients’ lives. Another

compelling impact of classification in biosignal processing is illustrated by laboratories where

researchers utilize classification methods to identify the category of unknown biomolecules. Due

to the high throughput of modern biomolecular experiments such as crystallography, nuclear

magnetic resonance (NMR), and electron microscopy, biochemists have instrumental means

to determine the molecular structure of vast numbers of proteins. Since proteins with similar

structures usually have similar functions, to recognize protein function biochemists resort to

exhaustive exploration of their structural similarities [19].

Classification in biomedicine faces several difficulties: (i) Experts need to take a long time to

accumulate enough knowledge to reliably distinguish between different related cases, say, normal

and abnormal; (ii) Manual classification among these cases is labor intensive and time consuming;

(iii) The most formidable challenge occurs when the signal characteristics are not prominent

and hence not easily discernible by experts. Automated methods for classification in signal

processing hold the promise for overcoming some of these difficulties and to assist biomedical

decision making. An automatic classifier can learn from a database the categorial information,

replace human operators, and classify indiscernible features without bias. This chapter focuses
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on automatic classification algorithms derived from signal processing methods.

A. Background on Classification

The function of a classifier is to automatically partition a given set of biomedical signals into

several subsets. For simplicity, we consider binary classification in this chapter, e.g., one subset

representing diseased patients and the other representing healthy patients. Classifiers in general

fall into two types:supervisedandunsupervised[20], [21]. Supervised classifiers request experts

to label a small portion of the data. The classifier then propagates this prior knowledge to the

remaining unlabeled data. The labels provided by the experts are a good source of information

for the classifier to learn decision making. Often, the experts lack confidence in labeling, which

gives rise to uncertainty in the classification results. The worst case is, of course, when the

experts mislabel the data, leading the classifier to produce incorrect results. Unlike supervised

classification, which is highly sensitive to the prior labels, unsupervised classifiers need no

prior class labels. An unsupervised classifier learns by itself the optimal decision rule from the

available data and automatically partitions the data set into two. The operator then matches the

two subsets to normal and abnormal states. In biomedical practice, it is common that different

experts disagree in their labeling priors; in this chapter we focuses on unsupervised classification.

Basically, unsupervised classification collectssimilar signals into the same group such that

different groups are asdissimilar as possible. Traditional approaches assume that the signals are

samples of a mixture of probability models. The classifier estimates from the data the model

parameters and then finds which model the signals fit best. Common approaches estimate the

model parameters by maximum-likelihood methods when the parameters are deterministic and

by Bayes estimation when the parameters are random variables. If the data does not follow the

probability models assumed, the performance of the classifier deteriorates. Another disadvantage

of these approaches is that they assume the parameters are unconstrained so they do not capture

the intrinsic structure of the data.

Graphical models are an alternative to design unsupervised classifiers. Graphical models

describe the data by a graph, where features extracted from the signals are mapped to vertices

and edges linking vertices account for the statistical correlations or probabilistic dependencies

between the features. The entire graph represents the global structure of the whole data set, while

the graph edges show the local statistical relations among signals. Although graphical models
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visualize the structural information, we need computable measures of the structural information

to derive the classifier. Spectral graph theory [22] provides us a tool to derive these measures [23].

B. Spectral Graph Based Classifier

Spectral graph theory studies the properties of graphs by their spectral analysis. The graph

structure is uniquely represented by a matrix referred to asgraph Laplacian. The spectrum of the

Laplacian is equivalent to the spectrum of the graph. In the sequel, we exploit the eigenvalues

and the eigenfunctions of the graph to design the classifier.

In the spectral graph framework, we formulate in [17] the task of data classification as a

problem of graph partitioning [22]. Given a set of signals, the first step is to extract features

from the signals and then to describe the feature set as a graph. We treat the feature values as

the vertices of a graph, and prescribe a way to assign edges connecting the vertices with high

correlated features. Figure 1(a) illustrates the graph representation of a set of five signals; the

five circles are the graph vertices denoting the five signals, and the lines are graph edges linking

correlated vertices. Graph partitioning is a method that separates the graph into disconnected

subgraphs, for example, one representing the subset of abnormal patients and the other repre-

senting the subset of healthy patients. Figure 1(b) conceptualizes graph partitioning; we partition

the original graph shown in Figure 1(a) by removing two edges, yielding two disjoint subgraphs.

The goal in graph partitioning is to find a small as possible subset of edges whose removal will

separate out a large as possible subset of vertices. In graph theory terminology, the subset of

edges that disjoins the graph is called acut, and the measure to compare partitioned subsets

of vertices is thevolume. Graph partitioning can be quantified by cut-to-volume ratio, termed

Cheeger ratio [22]. The optimal graph partitioning seeks theminimal Cheeger ratio, which is

called theisoperimetric numberand is also known as theCheeger constant[23] of the graph.

Evaluating the Cheeger constant assists the determination of the optimal edge cut.

The determination of the Cheeger constant is a combinatorial problem. We can enumerate all

the possible combinations of two subgraphs partitioning the original graph, and then choose the

combination with the smallest Cheeger ratio. However, when the number of vertices is very large,

the enumeration approach is infeasible. We circumvent this obstacle by adopting an optimization

framework. We derive from the Cheeger constant an objective functional to be minimized with

respect to the classifier. The minimization of the functional leads to optimal classification.
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If there is a complete set of basis functions on the graph, we can represent the classifier by a

linear combination of the basis functions. There are various ways to obtain the basis functions,

e.g., using the Laplacian operator [24], the diffusion kernel [25], or the Hessian eigenmap [26].

Among these, we choose the Laplacian. The spectrum of the Laplacian operator has been used to

obtain upper and lower bounds on the Cheeger constant [22]; these bounds will be helpful in our

classifier design. The eigenfunctions of the Laplacian form a basis of the Hilbert space of square

integrable functions defined on the graph. Thus, we express the classifier as a linear combination

of the Laplacian eigenfunctions. Since the basis is known, the optimal classifier is determined by

the coefficients in the linear combination. The classifier can be further approximated as a linear

combination of only themost relevantbasis functions. The approximation reduces significantly

the problem from looking for a large number of coefficients to estimating only a few of them.

Once we determine the optimal coefficients, the optimal classifier automatically partitions the

data set into two parts.

C. Chapter Organization

The organization of this chapter is as follows. Section II describes how we represent a data

set by a graph and introduces the Cheeger constant for graph partitioning. Section III details

the optimal classification algorithm in the framework of spectral graph theory. The algorithm

design follows our work presented in [17]. In Section IV, we adopt a toy model to illustrate

the important concepts in developing the classifier. We also demonstrate the application of the

classifier on a contrast-enhanced MRI data of the heart. Finally, Section V concludes this chapter.

II. GRAPH REPRESENTATION OFSIGNALS

Given a set of feature vectorsX = {x1,x2, · · · ,xN} extracted from the signals to be classified,

we begin with its graph representation. There are several ways to achieve graph representation,

for example, based on statistical correlation [17] or nearest neighbor [24]. We follow the former

approach in this chapter.

A. Weighted Graph Representation

A graph G(V, E) that describes the dataX has a setV of vertices and a setE of edges

linking the vertices. In this study, we assume that the graphG is connected; that is, there are
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no disjoint subgraphs before running the graph partitioning algorithm. InG, each vertexvi ∈ V

corresponds to a feature vectorxi. We next assign edges connecting the vertices. In the graph

representation ofX, the vertices with high possibility of being drawn from the same class are

linked together. The main strategy is to connect vertices with similar feature vectors, because

feature vectors in the same class have the same values up to noise. To account for the similarity

among feature vectors, we need a metricρij = ρ(xi,xj) between the featuresxi, xj of vertices

vi, vj. The choice of metricρ depends on the practical application. A simple choice is the

Euclidean distance [24], i.e.,

ρij = ‖xi − xj‖. (1)

Another metric that considers randomness in signals is the Mahalanobis distance, [17], [20]

ρij =
√

(xi − xj)T Σ−1
ij (xi − xj) , (2)

whereΣij is the covariance matrix betweenxi andxj. Other metrics include mutual information

or t-statistics. When the distanceρij is below a predetermined thresholdτρ, the verticesvi, vj

are connected by an edge; otherwise, they remain disconnected.

Since connected pairs of vertices do not have the same distance, we considerweightededges

by using a weight function on the edges. Belkin and Niyogi [24] and Coifmanet al. [25] suggest

Gaussian kernel for computing the weightsWij on edgeseij:

Wij =





exp
(
−ρ2

ij

σ2

)
, if there is an edgeeij

0 , if there is no edgeeij

, (3)

whereσ is the Gaussian kernel parameter. The larger the value ofσ is, the more weight far-away

vertices will exert on the weighted graph. The weightWij is large when the signals of two linked

verticesvi, vj are similar.

The weighted graph is equivalently represented by itsN × N weighted adjacency matrix

W whose elementsWij are the edge weights in equation (3). Note that the matrixW has a

zero diagonal because we do not allow the vertices to be self-connected; it is symmetric since

Wij = Wji.

B. Graph Partitioning and the Cheeger Constant

In graph terms, classification means the division of the graphG(V, E) into two disjoint

subgraphs. The task is to find a subsetE0 of edges, called anedge cut, such that removing this cut
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separates the graphG(V, E) into two disconnected subgraphsG1 = (V1, E1) andG2 = (V2, E2),

whereV = V1 ∪ V2, V1 ∩ V2 = ∅, andE = E0 ∪ E1 ∪ E2.

In the framework of spectral graph theory, we define anoptimal edge cut by looking for the

Cheeger constant, [22] ,Γ(V1) of the graph,

Γ(V1) = min
V1⊂V

|E0(V1, V2)|
min{vol(V1), vol(V2)} . (4)

Without loss of generality, we can always assume that vol(V1) ≤ vol(V2), so the Cheeger constant

becomes

Γ(V1) = min
V1⊂V

|E0(V1, V2)|
vol(V1)

. (5)

In equations (4) and (5),|E0(V1, V2)| is the sum of the edge weights in the cutE0:

|E0(V1, V2)| =
∑

vi∈V1,vj∈V2

Wij . (6)

The volume vol(V1) of V1 is defined as the sum of the vertex degrees inV1:

vol(V1) =
∑
vi∈V1

di , (7)

where the degreedi of the vertexvi is defined as

di =
∑
vj∈V

Wij . (8)

The volume vol(V2) of V2 is defined in a similar way to volume vol(V1), as in (7).

We can rewrite the vertex degreedi by considering the vertexvj in eitherV1 or V2; i.e.,

di =
∑

vj∈V1

Wij +
∑

vj∈V2

Wij . (9)

Assuming that the vertexvi is in V1, the second term in equation (9) is the contribution ofvi

made to the edge cut|E0(V1, V2)|. Taking into account all the vertices inV1, we reexpress the

edge cut:

|E0(V1, V2)| =
∑
vi∈V1

∑
vj∈V2

Wij (10)

=
∑
vi∈V1


di −

∑
vj∈V1

Wij


 . (11)
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Equation (11) can be written in matrix form. We introduce an indicator vectorχ for V1 whose

elements are defined as

χi =





1, if vi ∈ V1

0, if vi ∈ V2

. (12)

It follows that the edge cut (11) is

|E0(V1, V2)| = χTDχ − χTWχ (13)

= χTLχ , (14)

whereD = diag(d1, d2, · · · , dN) is a diagonal matrix of vertex degrees, and

L = D − W (15)

is the Laplacian of the graph, see [22]. The LaplacianL is symmetric, becauseD is diagonal

andW is symmetric. Further, it can be shown thatL is positive semidefinite since the row sums

of L are zeros.

The volume vol(V1) can be expressed in terms of the indicator vectorχ for V1, see (12),

vol(V1) =
∑
vi∈V1

di = χTd , (16)

whered is the column vector collecting all the vertex degreesdi. Replacing (14) and (16) into

the Cheeger constant (5), we write the Cheeger constant in terms of the indicator vectorχ:

Γ(χ) = min
χ

χTLχ

χTd
. (17)

The optimal graph partitioning corresponds to the optimal indicator vector

χ̂ = argmin
χ

χTLχ

χTd
. (18)

C. Objective Functional for Cheeger Constant

In equation (17), intuitively, minimizing the numeratorχTLχ and maximizing the denominator

χTd would minimize the Cheeger ratio. Putting a minus sign in front ofχTd, we determine the

optimal indicator vector̂χ by minimizing the objective functional

Q(χ) = χTLχ − βχTd , (19)
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whereβ is the weight. The objectiveQ(χ) is convex, because the graph LaplacianL is positive

semidefinite. In addition, the second term0 ≤ χTd ≤ vol(V ) is finite, so the minimizer̂χ exists.

Since the indicatorχi is either 1 or 0 at vertexvi, see equation (12), there are2N candidate

indicator vectors. When the numberN of signals is large, it is not computationally feasible

to determine the Cheeger constant, or to minimize the objectiveQ(χ), by enumerating all the

candidate indicator vectors. The next section describes a method to avoid this combinatorial

obstacle.

III. O PTIMAL CLASSIFICATION ALGORITHM

A. Spectral Analysis of the Graph LaplacianL

The spectral decomposition of the graph LaplacianL, which is defined in equation (15),

gives the eigenvalues{λn}N−1
n=0 and eigenfunctions{φ(n)}N−1

n=0 . By convention, we index the

eigenvalues starting with 0 and in ascending order. Because the LaplacianL is symmetric and

positive semidefinite, its spectrum{λn} is real and nonnegative and its rank isN − 1. In the

framework of spectral graph theory [22], the eigenfunctions{φ(n)} assemble a complete set and

span the Hilbert space of square integrable functions on the graph. Hence, we can express any

square integrable function on the graph as a linear combination of the basis functions{φ(n)}.

The domain of the eigenfunctions are vertices, so the eigenfunctions{φ(n)} are discrete and are

represented by vectors

∀n = 0, · · · , N − 1, φ(n) = [φ
(n)
1 , φ

(n)
2 , · · · , φ

(n)
N ]T . (20)

Note that the subscriptsi ∈ I = {1, 2, · · · , N} correspond to the indices denoting the vertices

vi.

We list here the properties of the spectrum of the Laplacian (see [22] for additional details)

that will be exploited to develop the classification algorithm:

1) For a connectedgraph, there is only one zero eigenvalueλ0, and the spectrum can be

ordered as

0 = λ0 < λ1 ≤ · · · ≤ λN−1 . (21)

The zeroth eigenvectorφ(0) is constant, i.e.,

φ(0) = α[1, 1, · · · , 1]T , (22)
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whereα = 1√
N

is the normalization factor forφ(0).

2) The eigenvectorsφ(n) with nonzero eigenvalues have zero averages, namely

N∑
i=1

φ
(n)
i = 0 . (23)

The low order eigenvectors correspond to low frequency harmonics.

3) For aconnectedgraph, the Cheeger constantΓ defined by (17) is upper and lower bounded

by the following inequality:
2

vol(V )
≤ Γ <

√
2λ1 , (24)

where vol(V ) = 1Td.

Without loss of generality, we can assume that these spectral properties hold in our study.

B. Classifier

The classifierc partitioning the graph vertex setV into two classesV1 andV2 is defined as

ci =





1, if vi ∈ V1

−1, if vi ∈ V2

. (25)

Utilizing spectral graph analysis, we express the classifier in terms of the eigenbasis{φ(n)}

c =
N−1∑
n=0

anφ(n) , (26)

wherean are the coordinates of the eigen representation. Note that the zeroth eigenvectorφ(0)

is a constant that can be ignored in designing the classifierc. Thus, the classifier expression

becomes

c =
N−1∑
n=1

anφ
(n) = Φa , (27)

where

a = [a1, a2, · · · , aN−1]
T (28)

stacks the classifier coefficients, andΦ is a matrix collecting the vector of the eigen-basis

Φ =
[
φ(1), φ(2), · · · , φ(N−1)

]
. (29)

The design of the optimal classifierc becomes now the problem of estimating the linear com-

bination coefficientsan.
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C. Objective Functional for Classification

In equation (17), the Cheeger constant is expressed in terms of the set indicator vectorχ that

takes 0 or 1 values. On the other hand, the classifierc defined in (25) takes±1 values. We relate

χ andc by the standard Heaviside functionH(x) defined by

H(x) =





1, if x ≥ 0

0, if x < 0
. (30)

Hence, the indicator vectorχ = [χ1, χ2, · · · , χN ]T for the setV1 is given by

χi = H(ci) . (31)

In equation (31), the indicatorχ is a function of the classifierc using the Heaviside functionH.

Furthermore, by (27), the classifierc is parameterized by the coefficient vectora, so the objective

functionalQ is parameterized by this vectora, i.e.,

Q(a) = χ(c(a))TLχ(c(a)) − βχ(c(a))Td . (32)

Minimizing Q with respect to the vectora gives the optimal coefficient vector̂a, which leads

to the optimal classifier̂c = Φâ. Using the eigenbasis to represent the classifier transforms the

problem of combinatorial optimization in (19) to estimating the real-valued coefficient vectora

in (32).

When the classifier is represented by the full eigenbasis, there areN − 1 parametersan to be

estimated. To avoid estimating too many parameters, we relax the classification function to be a

smooth function, which means that only the firstp harmonics of the eigenbasis are kept in (27).

The classifierc is now

c =

p∑
n=1

anφ
(n) = Φa , (33)

where we redefine

a = [a1, a2, · · · , ap]
T (34)

and

Φ =
[
φ(1), φ(2), · · · , φ(p)

]
. (35)

The estimation of theN − 1 parameters in (27) is reduced to the estimation of thep ¿ (N − 1)

parameters in (33). As long asp is chosen small enough, the latter is more numerically tractable

than the former.



12

The weighting parameterβ is unknown in the objective functional (19). If we knew the

Cheeger constantΓ, we could setβ = Γ and the objective function would be

Q(χ) = χTLχ − ΓχTd , (36)

whose solution isQ(χ) = 0, see (17). However, we cannot setβ = Γ beforehand, since the

Cheeger constantΓ(χ̂) is dependent on the unknown optimal indicator vectorχ̂.

We can reasonably predetermineβ by using spectral properties of the graph Laplacian: The

upper and lower bounds of the Cheeger constant are related to the first nonzero eigenvalueλ1

and the graph volume vol(V ), see equation (24). The bounds restrain the range of values for

the weightβ. For simplicity, we setβ to the average of the Cheeger constant’s upper and lower

bounds,

β =
1

2

(
2

vol(V )
+

√
2λ1

)
. (37)

D. Minimization Algorithm

Taking the gradient ofQ(a) with respect to the vectora yields

∂Q

∂a
= 2

(
∂χT

∂a

)
Lχ − β

(
∂χT

∂a

)
d , (38)

where the matrix∂χT

∂a
is

∂χT

∂a
=

[
∂χ1

∂a
,
∂χ2

∂a
, · · · ,

∂χN

∂a

]
(39)

=




∂χ1

∂a1

∂χ2

∂a1
· · · ∂χN

∂a1

...
... · · · ...

∂χ1

∂ap

∂χ2

∂ap
· · · ∂χN

∂ap


 . (40)

Using the chain rule, the entries
(

∂χT

∂a

)
mn

are

(
∂χT

∂a

)

mn

=
∂χn

∂am

(41)

=
∂χn

∂cn

∂cn

∂am

(42)

= δ(cn)
∂

∑p
j=1 ajφ

(j)
n

∂am

(43)

= δ(cn)φ(m)
n . (44)
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In (43), δ(x) is the delta (generalized) function defined as the derivative of the Heaviside

functionH(x).

To facilitate numerical implementation, we use theregularizedHeaviside functionHε and the

regularized delta functionδε; they are defined, respectively, as

Hε(x) =
1

2

[
1 +

2

π
arctan

(x

ε

)]
, (45)

δε(x) =
dHε(x)

dx
=

1

π

(
ε

ε2 + x2

)
. (46)

Using the regularized delta function, the explicit expression of∂χT

∂a
is

∂χT

∂a
=




δε(c1)φ
(1)
1 δε(c2)φ

(1)
2 · · · δε(cN)φ

(1)
N

...
... · · · ...

δε(c1)φ
(p)
1 δε(c2)φ

(p)
2 · · · δε(cN)φ

(p)
N


 (47)

= ΦT ∆ , (48)

where we define the diagonal matrix

∆ = diag(δε(c1), δε(c2), · · · , δε(cN)) . (49)

Substituting (48) into (38), the gradient of the objectiveQ has the compact form

∂Q

∂a
= 2ΦT ∆Lχ − βΦT ∆d . (50)

The optimal coefficient vector̂a is obtained by looking for

∂Q

∂a
= 0. (51)

We have to solve this minimization numerically, because both the matrix∆ and the vector

χ depend on the unknown coefficient vectora. We adopt the gradient descent algorithm to

iteratively find the solution̂a. The classifier̂c is then determined by

ĉ = Φâ . (52)

The vertices with indicatorŝχi = H(ĉi) = 1 correspond to classV1 and χ̂i = H(ĉi) = 0

correspond to classV2.

E. Algorithm Summary

The development of the classifier involves two major steps: graph representation and classi-

fication. We summarize them in Algorithms 1 and 2, respectively.
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Algorithm 1 Graph representation algorithm
1: procedure GRAPHREP(X)

2: Index all the signal features by a set of integersI = {1, · · · , N}
3: Initialize W as anN × N zero matrix

4: for all i 6= j ∈ I do

5: Compute metricρij by (1) or (2)

6: if ρij < τρ then

7: Wij ← Compute edge weightWij by (3)

8: end if

9: end for

10: return W

11: end procedure

Algorithm 2 Classification algorithm
1: procedure CLASSIFIER(W)

2: Compute graph LaplacianL by (15)

3: EigendecomposeL to obtain{λn} and{φ(n)}
4: Keep the smallestp nonzero eigenvalues and corresponding eigenvectors

5: Compute the weighting parameterβ by (37)

6: Initialize the classifier coefficient vectora = 1 and the objectiveQ = ∞
7: repeat

8: c ← Compute classifierc by (33)

9: χ ← Compute indicator vectorχ by (31)

10: Q ← Compute objectiveQ by (32)

11: a ← Computea − ∂Q
∂a

by (50)

12: until ∂Q
∂a

= 0

13: return χ

14: end procedure
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IV. EXAMPLES

A. Toy Model

We use a toy model to illustrate all the concepts introduced in the preceding sections. Suppose

that a given set of 3D features have valuesx1 = [0, 0, 1]T , x2 = [0, 0.5, 1]T , x3 = [0.7, 0.1, 0.9]T ,

andx4 = [0.7, 0, 1]T .

Graph Representation.The feature vectors{x1,x2,x3,x4} correspond to four nodes{v1, v2, v3, v4},

respectively, in their graph representation, shown in Figure 2(a). The next task is to assign

edges to link the vertices. For simplicity, we choose the Euclidean distance as the metric, see

equation (1). Table I summarizes the distanceρij between every pair of vertices. When we set the

thresholdτρ to 0.85, we connect all the vertices except betweenv2 andv4, resulting in the graph

structure shown in Figure 2(b). Next, we compute the edge weightsWij by using the Gaussian

kernel (3) withσ2 = 1. Table I records the weightsWij. Note thatW24 = 0 becauseρ24 > τρ.

Figure 2(c) presents the weighted graph, where the thicker the edges, the larger the weights. A

large weight means that the signals of two connected vertices are highly similar and the two

corresponding vertices are strongly connected. The graph now is equivalently represented by the

weighted adjacency matrix

W =




0 0.78 0.60 0.61

0.78 0 0.52 0

0.60 0.52 0 0.98

0.61 0 0.98 0




. (53)

It follows that the degree matrix and the Laplacian are

D =




1.99 0 0 0

0 1.30 0 0

0 0 2.10 0

0 0 0 1.59




(54)

and

L =




1.99 −0.78 −0.60 −0.61

−0.78 1.30 −0.52 0

−0.60 −0.52 2.10 −0.98

−0.61 0 −0.98 1.59




, (55)
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respectively.

Graph Cut. Recall that a cut is a set of edges whose removal will disjoin the graph. For

example, with reference to Figure 3(a), the edgese13, e14, ande23 assemble a cut; these edges

are drawn by dashed lines. Removing these edges partitions the graph into two subgraphs, see

Figure 3(b). There are many graph cuts in a given graph. Figure 4 enumerates all the graph cuts

of this toy model. We next discuss which cut is the optimal one.

Cheeger Constant.The Cheeger constant quantifies twostrongly intraconnectedsubgraphs

that areweakly interconnectedin the original graph. It is mathematically equivalent to searching

for a cut with the minimum cut-to-volume ratio. We take Cut5 in Figure 4(e) as an example

to illustrate how to compute its cut-to-volume ratio. Cut5 disjoins the vertex setV into V1 =

{v1, v2} and V2 = {v3, v4}, corresponding to the indicator vectorχ = [1, 1, 0, 0]T . Calculating

the quantityχTLχ on the cut Cut5 and the volumeχTd leads to the ratio0.53. We could let

V1 = {v3, v4} and V2 = {v1, v2} with indicator χ = [0, 0, 1, 1]T , but the volumes vol(V1) =

χTd = 3.69 and vol(V2) = (1 − χ)Td = 3.29 violate the definition vol(V1) ≤ vol(V2), see

equation (5). Table II details the intermediate steps to evaluate the cut-to-volume ratios for all

the cuts. According to the definition of the Cheeger constant, Cut5 is the optimal one because

its ratio is the smallest among all. This result is not surprising when we look at the pictorial

descriptions of all graph cuts in Figure 4. The thinnest (weakest) three edgese13, e14, e23 form the

optimal cut, while the thickest (strongest) two edgese12, e34 remain in the two disjoint, tightly

linked subgraphs.

Classifier. The classifier is represented by the eigenbasis of the graph Laplacian. We begin

with the spectral analysis of the graph LaplacianL, whose eigenvalues and eigenvectors are given

in Table III. The reader can verify that the spectral properties, (21) to (24), hold. For illustration

purposes, take the full eigenbasis to represent the classifier. Later on in the next paragraph, we

discuss the approximate representation. After running the optimization algorithm 2, we determine

the optimal classifier to bêc = [1, 1,−1,−1]T with linear combination coefficients:a1 = 1.69,

a2 = −1.04, a3 = 0.28. Substituting the components of the classifierc into the Heaviside function

results in the optimal indicator vector̂χ = [1, 1, 0, 0]T , which is equivalent to the optimal cut,

namely Cut5. This shows that our optimization approach circumvents the exhaustive enumeration

of all the cuts shown in Table II.

We now consider the approximate representation of the classifier. Truncate by dropping in the



17

classifier representation the last eigenvectorφ(3). The linear combination ofφ(1) and φ(2) with

coefficientsa1 = 1.69 anda2 = −1.04 leads to the classifier̃c = [1.04, 0.92,−0.80,−1.17]T . Due

to running a truncated representation, the classifierc̃ no longer exactly follows the definition (25)

that all its components̃ci should be either1 or −1. We force this definition by applying the

Heaviside function, which yields the same optimal indicator vectorχ̂ = [1, 1, 0, 0]T . This example

demonstrates that relaxing the number of eigenvectors used for classifier representation does not

necessarily sacrifice the classification performance, but does reduce the number of coefficients

an to be estimated. Thus, the computational complexity and storage demands are reduced as

well.

B. Contrast-Enhanced Cardiac MRI

Contrast-enhanced MRI is a useful tool to monitor the role of immune cells in many pathophys-

iological processes. In 1990, Weisslederet al. [27] introduced a new contrast agent: ultrasmall

superparamagnetic iron oxide (USPIO) particles. After being administered intravenously into the

circulation system, USPIO particles can be endocytosed by immune cells, so that the infiltration of

the USPIO-labeled immune cells in malfunction regions of an organ will display hypointensities

under T∗2 weighted MRI. For example, Figure 5(a) shows the left ventricular images of two

transplanted hearts with rejection, imaged on post-operation days (PODs) 4 and 6; the darker

intensities in the heart reveal the presence of USPIO particles, leading to the localization of

rejecting myocardial tissue.

To identify the rejecting cardiac regions, the first task is to detect the USPIO-labeled areas.

There are two challenges when detecting the USPIO particles: (i) Macrophages accumulate in

multiple regions without known patterns, so cardiologists must scrutinize carefully the entire

image to determine dark pixels; (ii) The heart motion blurs the image, causing it to be very

difficult to visually classify pixels at the boundary between dark and bright regions. Manual

detection becomes labor-intensive and time-consuming, and the results are operator dependent.

To reduce the expert labor work and to achieve consistent detection, we apply the spectral graph

algorithm discussed in Sections II and III to classify USPIO-labeled and -unlabeled pixels.

Experimental Setting. In this study, the signals are image intensities. We associate each

vertex vi with a 3 × 3 block of pixels centered at pixeli. Vectorization of this block of

pixel intensities is treated as the feature vectorxi assigned to vertexvi. To build the graph
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representation, we adopt the Mahalanobis distance (2) to compute the vertex similarities. There

are several parameters needed for running the classifier; their values are described next.

• We setσ = 0.1 when computing the edge weights in (3). This choice ofσ is suggested by

Shi and Malik [28], who indicate empirically thatσ should be set at10% of the range of

the image intensities. In our MRI data, the pixel intensities are in the range from0 to 1.

• The parameterε for the regularized Heaviside and delta functions in (45) and (46), respec-

tively, is set to0.1. The smaller the parameterε is, the sharper these two regularized functions

are. Forε = 0.1, the regularized functions are a good approximation to the standard ones.

• To determine the numberp of eigenfunctions kept to represent the classifierc, we tested

values ofp from 5 to 20. The best classification results are obtained whenp = 16.

• To reach the minimum of the objective functional, we solve∂Q
∂a

= 0 iteratively. We terminate

the iterative process when the norm of the gradient is smaller than10−4, or when we reach

200 iterations. This upper limit on the number of iterations led to convergence in all our

experiments; in most cases, we observed convergence within the first100 iterations.

Automatic Classification Results.We apply the classifier to the images displayed in Fig-

ure 5(a). Figure 5(b) shows the detected USPIO-labeled areas denoted by red (darker pixels).

The algorithm takes less than three minutes per image to localize the regional macrophage

accumulation.

Validation with Manual Classification. To validate the results, we compare our automatic

classification results with the results obtained manually by a human expert. Manual classification

was carried out before running the automatic classifier. Figure 5(c) shows the manually classified

USPIO-labeled regions. Our automatically detected regions show good agreement with the

manual results. To appreciate better how much the classifier deviates from manual classification,

define the percentage error by

P (ε) =
|(automatic USPIO-labeled area)− (manual USPIO-labeled area)|

myocardium area
. (56)

The deviation of the classifier is below2.53% average, showing a good agreement between the

automatic classifier and manual classification.

Comparisons with Other Classification Approaches.Beyond manual classification, simple

thresholding [29] is a common automatic method used for classification of USPIO-labeled

regions. Figure 6(a) shows the classification results obtained by thresholding the images in
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Figure 5(a). Table IV summarizes the error analysis of the thresholding classifier by using the

same definition for percentage error given in (56). Although the classification results by our

classifier and by thresholding shown in Figures 5(b) and 6(a), respectively, are visually difficult

to distinguish, the quantitative error analysis shown in Table IV demonstrates that the thresholding

method has higher error rates than the automatic classifier. Thresholding is prone to inconsistency

because of the subjectivity in choosing the thresholds and because it does not account for the

noise and motion blurring of the images.

We provide another comparison by contrasting our graph based classifier presented in Sec-

tions II and III with an alternative classifier, namely, theisoperimetric partitioningalgorithm

proposed by Grady and Schwartz [30]. The isoperimetric algorithm uses also a graph represen-

tation, but does not take into account the noise on the edge weights in the approach presented

before. The isoperimetric algorithm attempts to minimize the objective functioncTLc, where

c is the real-valued classification function andL is the graph Laplacian. The minimization is

equivalent to solving the linear systemLc = 0 with a constraint thatc is not a constant.

We applied this method to the images in Figure 5(a). The classification results are shown in

Figure 6(b). Comparing these results with the manual classification results in Figure 5(c), we

conclude that the isoperimetric partitioning algorithm fails completely on this data set. The

problems with this method are twofold. First, the objective function captures the edge cut but

ignores the volume enclosed by the edge cut. This contrasts with the functional in equation (32),

the Cheeger constant, that captures faithfully the goal of minimizing the cut-to-volume ratio.

Second, although the desired classifier obtained by the isoperimetric partitioning is a binary

function, the actual classifier it derives is a relaxed real-valued function. Our approach addresses

this issue via the Heaviside function.

The final comparison is between the method presented in this chapter and the classifier derived

using a level setapproach [31], [32], which has been applied successfully to segment heart

structures [9]. The level set method finds automatically contours that are the zero level of a

level set function defined on the image and that are the boundaries between USPIO-labeled and

-unlabeled pixels. The optimal level set is obtained to meet the following desired requirements:

(i) the regions inside and outside the contours have distinct statistical models; (ii) the contours

capture sharp edges; and (iii) the contours are as smooth as possible. Finally, we can classify the

pixels enclosed by the optimal contours as USPIO-labeled areas. The experimental results using
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the level set approach are shown in Figures 6(c) and Table IV. In the heart images, macrophages

are present not only in large regions but also in small blobs with irregular shapes whose edges

do not provide strong forces to attract contours. The contour evolution tends to ignore small

blobs, leading to a larger misclassification rate than the graph based method presented in this

chapter.

V. CONCLUSION AND RESEARCHDIRECTIONS

Biomedical signal processing is a rapidly developing field. Biomedical data classification in

particular plays an important role in biological findings and medical practice. Due to high data

throughput in modern biomedical experiments, manually classifying a large volume of data is

no longer feasible. It is desirable to have automatic algorithms to efficiently and effectively

classify the data on behalf of domain experts. A reliable classifier avoids bias induced by human

intervention and yields consistent classification results.

This chapter has discussed the usefulness of spectral graph theory to automatically classify

biomedical signals. The edges of the local graph encode the statistical correlations among the

data, and the entire graph presents the intrinsic global structure of the data. The Cheeger constant

studied in spectral graph theory is a measure of goodness of graph partitioning. The classifier is

the optimization of a functional derived from the Cheeger constant and is obtained by exploiting

the graph spectrum. We detail step by step how to develop the classifier using a toy model.

The application of the classifier to contrast-enhanced MRI data sets demonstrates that the graph

based automatic classification agrees well with the ground truth; the evaluation shows that the

spectral graph classifier outperforms other methods like the commonly used thresholding, the

isoperimetric algorithm, and a level set based approach.
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(a) Graph representation.
 

 

 

 

 

 

(b) Graph partitioning.

Fig. 1. Illustration of graph representation and graph partitioning.



24

 

v1  

v3 v4 

















1

0

0

 

















1

5.0

0

 

















9.0

1.0

7.0

 

















1

0

7.0

 

v2 

(a) Graph nodes.

 

 

 

v1 v2 

v3 v4 

(b) Graph structure.

 

 

 

 

 

v1 v2 

v3 v4 

0.78 

0.60 0.61 0.52 

0.98 

(c) Weighted graph.

Fig. 2. Illustration of graph representation of the toy model.
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(a) The dashed edges assemble a cut.
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(b) The removal of the cut partitions the graph.

Fig. 3. Illustration of graph cut.
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(d) Cut4.
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(e) Cut5.
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(f) Cut6.
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(g) Cut7.

Fig. 4. Possible graph cuts of the toy model.
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(a) USPIO-enhanced images.

(b) Automatically classified results.

(c) Manually classified results.

Fig. 5. Application of our algorithm to rejecting heart transplants. Darker regions denote the classified USPIO-labeled pixels.

Left: POD4; right: POD6.
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(a) Thresholding method.

(b) Isoperimetric algorithm.

(c) Level set approach.

Fig. 6. Application of other algorithms to rejecting heart transplants. Darker regions denote the classified USPIO-labeled pixels.

Left: POD4; right: POD6.
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TABLE I

SIGNAL SIMILARITIES AND EDGE WEIGHTS IN THE TOY MODEL.

vertex pair(vi, vj) (v1, v2) (v1, v3) (v1, v4) (v2, v3) (v2, v4) (v3, v4)

ρij 0.50 0.71 0.70 0.81 0.86 0.14

Wij 0.78 0.60 0.61 0.52 0 0.98
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TABLE II

INTERMEDIATE STEPS TO EVALUATECHEEGER CONSTANTS FOR THE TOY MODEL.

graph cut Cut1 Cut2 Cut3 Cut4 Cut5 Cut6 Cut7

V1 {v1} {v2} {v3} {v4} {v1, v2} {v2, v4} {v2, v3}
V2 {v2, v3, v3} {v1, v3, v4} {v1, v2, v4} {v1, v2, v3} {v3, v4} {v1, v3} {v1, v4}
χ [1, 0, 0, 0]T [0, 1, 0, 0]T [0, 0, 1, 0]T [0, 0, 0, 1]T [1, 1, 0, 0]T [0, 1, 0, 1]T [0, 1, 1, 0]T

χT Lχ 1.99 1.30 2.10 1.59 1.73 2.89 2.36

χT d 1.99 1.30 2.10 1.59 3.29 2.89 3.39
χT Lχ
χT d

1 1 1 1 0.53 1 0.70
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TABLE III

SPECTRUM OF THE GRAPHLAPLACIAN .

eigenvalues λ0 = 0 λ1 = 1.34 λ2 = 2.66 λ3 = 2.97

eigenvectors φ(0) =




0.50

0.50

0.50

0.50




φ(1) =




0.10

0.74

−0.22

−0.62




φ(2) =




−0.85

0.33

0.41

0.11




φ(3) =




−0.16

0.30

−0.73

0.59
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TABLE IV

PERCENTAGE DEVIATION OF VARIOUS ALGORITHMS VERSUS MANUAL CLASSIFICATION.

method spectral graph thresholding level set isoperimetric

POD4 1.91% 7.61% 8.39% fail

POD6 2.53% 6.26% 6.15% fail


